CHROM. 18 128

Note

Analysis of tert.-butylated cresol mixtures by capillary gas chromatography and capillary gas chromatography-mass spectrometry

C. E. DÖRING*, D. ESTEL, W. PEHLE, M. GAIKOWSKI and K. SEIFFARTH VEB Leuna-Werke "Walter Ulbricht", DDR-4220 Leuna (G.D.R.) (First received May 15th, 1985; revised manuscript received August 20th, 1985)

The alkylation of cresol with isobutene is a method often used for the production of *tert*.-butylcresols. Mono- and dialkylated cresols as well as cresylic ether are the reaction products. The xylenols, contained in impure cresol, phenol and guaia-col react in the same way. By alkylation with a technical C₄ fraction, the appearance of disubstituted mixed *sec.*-butyl-*tert*.-butyl derivatives can also be expected.

Table I shows the number of isomers of some types of compounds which theoretically can be formed during the alkylation. Even, if the actual number of isomers produced is less, a multicomponent mixture is expected. The complete analysis of the *tert*.-butylation products of cresol has, to our knowledge, hitherto not been reported. Some workers described only the analysis of selected pairs of isomers on packed columns². We decided to use capillary gas chromatography for the analysis of reaction mixtures.

The only way to identify the constituents was to use gas chromatography-mass spectrometry (GC-MS), since boiling point data are known only for a few constituents (Table II), structure-retention relationships are not available to the extent as, e.g., in the case of alkyl aromatics and generally only a limited number of test substances was available. Thus, whereas the different types of compounds may

TABLE I
THEORETICALLY POSSIBLE ISOMERS OBTAINED UPON tert.-BUTYLATION OF TECHNICAL CRESOL MIXTURES

Type of compound	Number of isomers
tertButyl-phenols	3
-guaiacols	4
-cresols	10
-xylenols	16
Di-tertbutyl-phenols	6
-guaiacols	6
-cresols	14
-xylenols	16
secButyl-tertbutyl-cresols	28
	113

TABLE II

BOILING POINTS OF tert.-BUTYLATED PHENOLS, CRESOLS AND XYLENOLS¹

tert.-bu = tert.-butyl; sec.-bu = sec.-butyl; phe = phenol; cre = cresol; xyl = xylenol.

No.	Compound	Boiling point (°C)
1	6-tertbu-o-cre	231
2	6-tertbu-p-cre	232.7
3	6-secbu-p-cre	237
4	6-tertbu-m-cre	244
5	6-secbu-m-cre	246-250
6	4-tertbu-o-cre	246.8
7	4-tertbu-2,6-xyl	248
8	6- <i>tert</i> bu-2,4-xyl	249
9	6- <i>tert</i> bu-2,3-xyl	252
10	2,6-di-tertbu-phe	253
11	6-tertbu-3,4-xyl	257
12	4-tertbu-2,3-xyl	259
13	2,4-di-tertbu-phe	264
14	4-tertbu-2,5-xyl	265
15	2,6-di-tertbu-p-cre	265
16	4,6-di-tertbu-o-cre	269
17	2,4,6-tri-tertbu-phe	278
18	4,6-di-tertbu-m-cre	282
19	4,6-di- <i>tert</i> bu-2,3-xyl	284

successfully be identified, in most cases their exact isomerism cannot be determined. GC-MS investigations on substituted phenols have been reported by a number of workers, e.g., Hunt et al.³, but tert.-butylated cresols were not included in their work.

EXPERIMENTAL

Capillaries of soft glass ($60 \text{ m} \times 0.25 \text{ mm}$) were used, which had been pretreated twice with Carbowax 20M according to Aue *et al.*⁴ after treatment with hydrochloric acid. The coating with Carbowax 20M was also carried out according to the dynamic method⁵. A Varian 1800 instrument equipped with a glass evaporator and a flame ionization detector was employed. Hydrogen was the carrier gas, and a temperature of 300° C was maintained in the injection system. The temperature of the column was held at 90° C for 8 min, then raised to 200° C at 4° C/min; the analysis was completed isothermally. The constituents were identified with an Hewlett-Packard 5992 B system.

The following compounds were available as authentic samples: 2-tert.-butyl-p-cresol; 6-tert.-butyl-m-cresol; 6-tert.-butyl guaiacol; 2,6-di-tert.-butyl-p-cresol; 4,6-di-tert.-butyl-m-cresol. Solid samples were dissolved in a small quantity of methanol. The quantitative evaluation was carried out with a computer via an LEDA interface⁶.

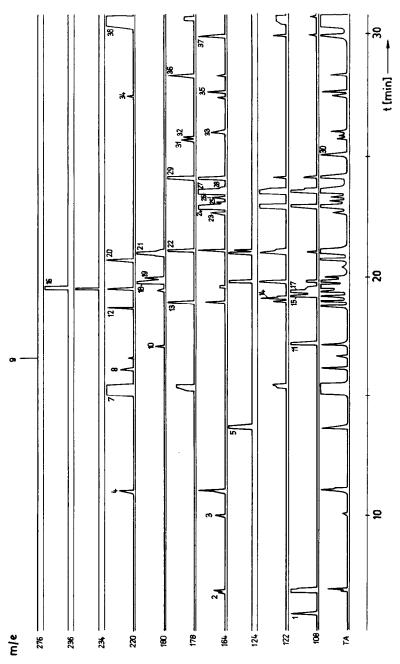


Fig. 1. Mass chromatogram (molecular ions) of a tert.-butylated cresol fraction. The peaks are designated according to Table III. The m/e values represent the molecular ions of the following compounds (TA = total ionization): 108, cresol; 122, xylenols; 124, methoxyphenols; 164, tert.-butylcresols; 178, tert.-butylxylenols; 180, methoxy-tert.-butylphenols; 220, di-tert.-butylcresols; 234, di-tert.-butylxylenols; 236, methoxy-di-tert.-butylphenols; 276, tert.-butoxy-di-tert.-butyltoluenes.

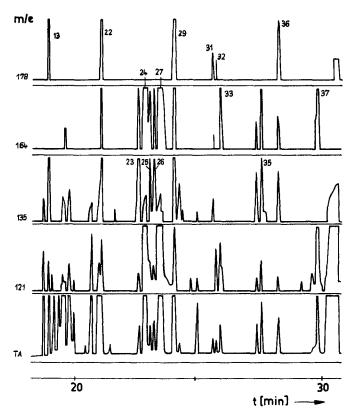


Fig. 2. Mass chromatogram (selected molecular and main fragment ions) of a tert-butylated cresol fraction. The peaks are designated according to Table III (TA = total ionization): 121, main fragment of the tert-butylcresols (M - 43); 135, main fragment of the sec-butylcresols (M - 29); 164, molecular ion of the tert-butylcresols; 178, molecular ion of the sec-butylcresols.

RESULTS AND DISCUSSION

In addition to the molecular peak, the fragment ions M-15 (basic peak) and M-43 are significant for the identification of mono- and di-tert.-butylated compounds by means of mass spectrometry. In case of sec.-butyl-tert.-butyl substituted compounds, the fragment M-29 occurs, whereas tert.-butyl-aryl ethers are characterized by the fragment M-56.

Fig. 1 shows a mass chromatogram in playback representation. The occurrence of some peak overlappings can be seen. For instance, 2,6-di-tert.-butyl-p-cresol (m/e = 220) is eluted together with a tert.-butylxylenol (m/e = 178), and a di-tert.-butylxylenol (m/e = 234) and a di-tert.-butylxylenol (m/e = 236) are coeluted.

Fig. 2 shows the intensities of the key fragments for *tert*.-butylcresols (m/e = 121) and *sec*.-butylcresols (m/e = 135) as well as those of the molecular peaks. Both types of derivatives can be clearly differentiated.

Fig. 3. represents a capillary chromatogram of a sample. Table III contains the relative retentions. As expected, compounds with sterically hindered OH groups

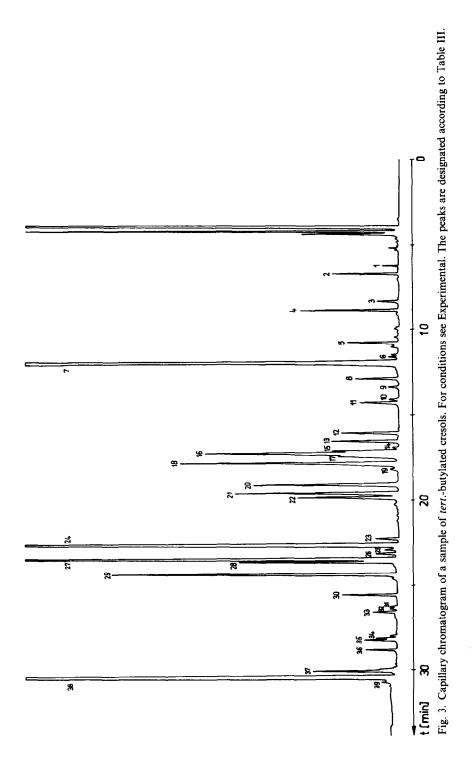


TABLE III
RELATIVE RETENTIONS

Values are relative to that of 2,6-di-tert.-butyl-p-cresol, 1.00; for conditions see Experimental. meo = Methoxy; buo = butoxy; bzn = benzene; tol = toluene; gua = guaiacol.

No.	Substance	Relative retention
1	meo-bzn	0.53
2	tertbuo-tol	0.56
3	tertbu-cre	0.70
4	tertbuo-tertbu-tol	0.74
5	Guaiacol	0.90
6	2,4,6-tri-bu-phe	0.92
7	2,6-di- <i>tert</i> bu- <i>p</i> -cre	1.00
8	secbu-tertbu-cre	1.08
9	di-tertbu-tertbuo-tol	1.13
10	6-tertbu-gua	1.18
11	o-Cresol + 6-tertbu-o-cre	1.19
12	secbu-tertbu-cre	1.33
13	tertbu-xyl	1.36
14	Xylenol	1.40
15	p-Cresol	1.41
16	4,6-di-tertbu-gua + di-tertbu-xyl	1.42
17	m-Cresol	1.43
18	tertbu-gua	1.47
19	tertbu-gua	1.50
20	4,6-di-tertbu-o-cre	1.57
21	tertbu-gua	1.61
22	tertbu-xyl	1.63
23	secbu-cre	1.83
24	2-tertbu-p-cre	1.85
25	secbu-cre	1.87
26	secbu-cre	1.89
27	tertbu-m-cre	1.91
28	tertbu-o-cre	1.92
29	tertbu-xyl	1.98
30	di- <i>tert.</i> -bu-phe	2.08
31	tertbu-cre	2.14
32	secbu-xyl	2.15
33	tertbu-cre	2.17
34	di-secbu-cre	2.28
35	secbu-cre	2.29
36	tertbu-xyl	2.34
37	tertbu-cre	2.43
38	4,6-di-tertbu-m-cre	2.48
39	isooctyl-cre	2.50

(e.g., 2,6-di-tert.-butyl-p-cresol and 2,4,6-tri-tert.-butylphenol) are eluted considerably earlier than would be expected from their boiling points.

For the investigation of such complex mixtures with different qualitative and quantitative compositions the use of the mass-selective detection proved indispensable in many cases in order to identify constituents from their retention data.

REFERENCES

1 E. Bartholomé, E. Biekert, H. Hellmann, H. Ley, W. M. Weigert and E. Weise (Editors), *Ullmanns Encyclopädie der technischen Chemie*, Vol. 18, Verlag Chemie, Weinheim, Deerfield Beach (FL), Basel, 4th revised and extended ed., 1979, p. 194.

- 2 H. Bhattacharjee, D. K. Mukherjee and D. Guha, J. Chromatogr., 247 (1982) 335.
- 3 D. F. Hunt, J. Shabanowitz, T. M. Harvey and M. L. Coates, J. Chromatogr., 271 (1983) 93.
- 4 W. A. Aue, C. R. Hastings and S. Kapila, J. Chromatogr., 77 (1973) 299.
- 5 G. Schomburg and H. Husmann, Chromatographia, 6 (1975) 517.
- 6 R. Fischer, K. Bier, D. Estel, C. E. Döring, G. Seifert and W. Walther, Chem. Tech. (Leipzig), 30 (1978) 34.